Canada’s natural gas future linked to hydrogen innovation: Don Pittis
You may not have noticed it on your heating bill yet but oil isn’t the only fossil fuel that is getting cheaper these days.
Last week natural gas prices plunged to 14 year year lows, hit by a decline in industrial demand and warmer-than-expected weather, which means residents are burning less gas to heat their homes. Producers are suffering.
But as the world starts to take global warming more seriously in the wake of the Paris climate talks, the longer term prospects for natural gas — or fossil methane — may be the brightest of any of Canada’s fossil fuels. And one of the reasons for that bright future is hydrogen.
It is well known that burning natural gas is a relatively clean way of producing energy compared to other fossil fuels. According to the U.S. Energy Information Administration, electricity produced by burning natural gas produces significantly less carbon dioxide than diesel generators and about half as much as coal.
Natural gas can be used in three different ways to power a car. It can be burned like gasoline in an internal combustion engine, considered less polluting than gasoline or diesel powered cars. It can be used to make electricity which is then used in a battery powered car.
Cleaner than battery-powered
But according to Richard Chahine at Trois Rivieres Hydrogen Research Institute, there is a third way that is even more carbon efficient. That is to extract hydrogen from natural gas using conventional methods and use it in one of the new hydrogen powered cars being sold around the world.
“Even if you use natural gas as a source of hydrogen but you run that hydrogen into a fuel cell car, you still are reducing CO2 emissions by about 65 per cent compared to combustion engines,” says Chahine.
But better than batteries?
Electric cars and hydrogen cars are both virtually pollution free when they are operating, but when considering the entire energy life-cycle, battery powered vehicles are often more polluting. That’s especially true in a place like the U.S. where so much electricity is produced by burning coal.
Chahine says the conversion efficiency of hydrogen fuel cells means running a car on hydrogen is a better bet even when that hydrogen is extracted from natural gas using relatively high-energy steam methane reform (SMR) conversion.
Of course it is more carbon efficient to produce electricity from wind or solar. We already know how to make hydrogen with green electricity, using electrolysis to separate water into its constituent molecules of hydrogen and oxygen. But so far, electrolysis is expensive and the vast majority of hydrogen still comes from methane.
Mature technology
“Eighty-five per cent of the world’s hydrogen production is based on this technology and, believe me, hydrogen has many other users in the chemical industry,” says Chahine. “They produce millions of tonnes a year, so this is a very mature technology.”
While researchers are trying to make that process more efficient, any gains are likely to be small.
That’s why researchers are now trying to invent new methods of separating hydrogen from natural gas that are more efficient and actually extract the carbon before it is burned.
A new process invented in Germany called methane cracking using molten tin extracts hydrogen leaving a residue of solid carbon powder. The process was profiled recently in The Economist. The scientists say they are three years away from an industrial prototype.
As always, the move from invention to commercial production is fraught.
A Canadian startup, New Brunswick-based Atlantic Hydrogen, had a carbon free system of its own to crack methane using microwave plasma, but the company went broke this autumn before it could create a commercial-sized facility.
Axel Meisen, who analyses the potential future of scientific developments especially in the energy sector, sees a long-term advantage for Canadian natural gas if these technologies become competitive. That could be helped by higher carbon pricing.
However, he sees one additional barrier to the carbon extraction process.
https://www.cbc.ca/news/business/natural-gas-green-hydrogen-extraction-1.3376412